Logo Loader
Course

|

The Ethical AI and Bias Detection in Data Models course in Kuala Lumpur is a specialized training course designed to help professionals understand and address bias in AI and data models.

Kuala Lumpur

Fees: 4700
From: 12-10-2026
To: 16-10-2026

Ethical AI and Bias Detection in Data Models

Course Overview

As AI adoption grows, so do concerns about fairness, accountability, and transparency. This Ethical AI and Bias Detection in Data Models Training Course introduces participants to frameworks, tools, and practices that ensure AI is developed and deployed responsibly.

Participants will learn how biases emerge in datasets and algorithms, explore methods for bias detection and mitigation, and examine governance models for ethical AI use. Real-world case studies will highlight how leading organizations build trust by prioritizing fairness, inclusivity, and compliance.

By the end of the course, attendees will be ready to integrate ethical frameworks into AI projects, detect hidden biases in data models, and support transparent decision-making systems.

Course Benefits

  • Understand key principles of ethical AI

  • Detect and mitigate bias in data and algorithms

  • Build transparent and explainable AI systems

  • Strengthen compliance with global ethical standards

  • Foster trust and accountability in AI deployment

Course Objectives

  • Define ethical AI principles and global standards

  • Identify common sources of bias in datasets and models

  • Apply techniques for bias detection and mitigation

  • Ensure transparency and explainability in AI systems

  • Address legal, regulatory, and ethical challenges

  • Build governance frameworks for responsible AI adoption

  • Promote fairness, inclusivity, and accountability in AI practices

Training Methodology

This course blends lectures, case studies, group discussions, and practical exercises with bias detection tools. Participants will evaluate real AI use cases and apply fairness assessment frameworks.

Target Audience

  • Data scientists and AI professionals

  • Compliance and risk officers

  • Policy-makers and regulators

  • Business leaders overseeing AI adoption

Target Competencies

  • Ethical AI principles and governance

  • Bias detection and mitigation in data models

  • Explainability and transparency in AI

  • Responsible AI leadership

Course Outline

Unit 1: Introduction to Ethical AI

  • Why ethics matter in AI systems

  • Key principles: fairness, accountability, transparency

  • Global ethical standards and frameworks

  • Case studies of ethical and unethical AI use

Unit 2: Sources of Bias in AI Systems

  • Data collection and representation bias

  • Algorithmic and design biases

  • Feedback loops and unintended consequences

  • Real-world examples of biased AI outcomes

Unit 3: Techniques for Bias Detection and Mitigation

  • Methods for identifying bias in datasets

  • Tools and frameworks for fairness testing

  • Bias mitigation strategies during model development

  • Practical exercises with bias detection tools

Unit 4: Transparency and Explainability

  • Explainable AI (XAI) concepts and tools

  • Communicating AI decisions to stakeholders

  • Balancing accuracy and interpretability

  • Case studies in explainable AI adoption

Unit 5: Governance, Compliance, and Future of Ethical AI

  • Building governance frameworks for AI ethics

  • Regulatory and legal considerations

  • Embedding ethics into enterprise AI strategy

  • Future trends in responsible and fair AI

Ready to build fair and trustworthy AI systems?
Join the Ethical AI and Bias Detection in Data Models Training Course with EuroQuest International Training and lead the way in responsible AI innovation.

Ethical AI and Bias Detection in Data Models

The Ethical AI and Bias Detection in Data Models Training Courses in Kuala Lumpur provide professionals with a rigorous and practical framework for developing, evaluating, and governing artificial intelligence systems responsibly. Designed for data scientists, analysts, technology leaders, compliance professionals, and decision-makers, these programs focus on ensuring that AI-driven models are transparent, fair, and aligned with ethical standards across organizational applications.

Participants gain a comprehensive understanding of ethical AI principles, including fairness, accountability, transparency, and explainability. The courses emphasize how bias can emerge at different stages of the data lifecycle—from data collection and feature selection to model training and deployment. Through applied case studies and analytical exercises, participants learn how to identify, measure, and mitigate bias in data models while maintaining performance and reliability.

The specialization highlights practical techniques for bias detection and mitigation, such as data auditing, model validation, performance monitoring, and impact assessment. Participants develop skills in evaluating model behavior across different population segments, interpreting algorithmic outputs, and implementing governance controls that support ethical AI deployment. The programs balance technical insight with managerial and governance perspectives, enabling participants to integrate ethical considerations into AI strategy, risk management, and decision-making processes.

Delivered through expert-led, interactive sessions, the Ethical AI and Bias Detection programs in Kuala Lumpur foster an internationally oriented learning environment that encourages interdisciplinary collaboration. Attending training in Kuala Lumpur enhances the experience through diverse professional perspectives and expert facilitation. By completing this specialization, participants strengthen their ability to design and manage AI systems responsibly—supporting trust, transparency, and long-term value creation through ethical and unbiased data-driven solutions in a global digital landscape.