Logo Loader
Course

|

The Industrial Engineering and Productivity Improvement course in Geneva is a comprehensive training course designed to equip professionals with the tools to optimize processes and improve productivity.

Geneva

Fees: 11900
From: 06-04-2026
To: 17-04-2026

Industrial Engineering and Productivity Improvement

Course Overview

Industrial engineering plays a vital role in improving productivity, reducing waste, and ensuring operational excellence. By applying systematic approaches to processes, resources, and workflows, organizations can achieve significant gains in efficiency, quality, and profitability.

This course covers the principles of industrial engineering, lean management, process design, workflow optimization, and continuous improvement techniques. Participants will also learn to apply digital tools and modern productivity frameworks to drive sustainable success.

At EuroQuest International Training, the course combines analytical techniques with practical applications, ensuring participants gain both the skills and confidence to implement productivity improvement initiatives effectively.

Key Benefits of Attending

  • Gain practical knowledge of industrial engineering principles

  • Improve productivity through process optimization techniques

  • Apply lean and Six Sigma methodologies for efficiency

  • Enhance quality and reduce operational waste

  • Strengthen organizational competitiveness with continuous improvement

Why Attend

This course equips professionals to lead productivity improvement initiatives, ensuring organizations achieve greater efficiency, profitability, and sustainable operational excellence.

Course Methodology

  • Expert-led lectures on industrial engineering concepts

  • Case studies of productivity improvement in global firms

  • Hands-on labs with process simulation tools

  • Group workshops on lean and Six Sigma applications

  • Interactive sessions on change and performance management

Course Objectives

By the end of this ten-day training course, participants will be able to:

  • Understand core principles of industrial engineering

  • Analyze workflows and identify bottlenecks

  • Apply lean, Six Sigma, and Kaizen methods for improvement

  • Use process mapping and value stream analysis tools

  • Improve resource utilization and reduce waste

  • Implement performance measurement frameworks

  • Strengthen decision-making with data and analytics

  • Apply digital tools for process automation and monitoring

  • Lead organizational change in productivity initiatives

  • Align process improvements with corporate goals

  • Ensure sustainability in productivity improvement efforts

  • Build a roadmap for continuous organizational excellence

Target Audience

  • Industrial and process engineers

  • Operations and production managers

  • Continuous improvement professionals

  • Supply chain and logistics managers

  • Executives overseeing manufacturing and operations

Target Competencies

  • Process analysis and optimization

  • Lean and Six Sigma application

  • Productivity measurement and management

  • Workflow and resource efficiency

  • Change and performance leadership

  • Digital tools for industrial engineering

  • Sustainable improvement strategies

Course Outline

Unit 1: Introduction to Industrial Engineering and Productivity

  • Role of industrial engineering in modern organizations

  • Productivity challenges in manufacturing and services

  • Principles of efficiency and effectiveness

  • Global case studies

Unit 2: Workflow and Process Analysis

  • Process mapping and workflow design

  • Identifying inefficiencies and bottlenecks

  • Value stream mapping

  • Practical lab on process redesign

Unit 3: Lean Management and Continuous Improvement

  • Lean principles and waste elimination

  • Kaizen and continuous improvement culture

  • Lean tools for daily operations

  • Success stories in lean adoption

Unit 4: Six Sigma and Quality Improvement

  • Six Sigma principles and DMAIC framework

  • Statistical process control (SPC)

  • Reducing variability and defects

  • Hands-on Six Sigma exercises

Unit 5: Resource Optimization and Efficiency

  • Workforce productivity measurement

  • Equipment and facility utilization

  • Time and motion studies

  • Improving overall equipment effectiveness (OEE)

Unit 6: Technology and Automation in Productivity

  • Role of automation in industrial engineering

  • Digital tools for process monitoring

  • Robotics and IoT applications

  • Case studies of smart factories

Unit 7: Supply Chain and Logistics Optimization

  • Streamlining logistics workflows

  • Inventory management strategies

  • Just-in-time (JIT) systems

  • Improving end-to-end supply chain efficiency

Unit 8: Data Analytics for Productivity

  • Using data for decision-making

  • KPIs and performance dashboards

  • Predictive analytics for productivity trends

  • Practical data-driven case study

Unit 9: Risk and Safety in Productivity Improvement

  • Balancing productivity with safety

  • Risk assessment in industrial processes

  • Regulatory compliance considerations

  • Sustainable and safe operations

Unit 10: Change Management in Productivity Initiatives

  • Overcoming resistance to process changes

  • Building a culture of continuous improvement

  • Employee engagement strategies

  • Communication and leadership skills

Unit 11: Strategic Alignment and Competitiveness

  • Linking productivity to business strategy

  • Global competitiveness and innovation

  • Benchmarking against industry leaders

  • Strategic roadmap for improvement

Unit 12: Capstone Productivity Improvement Project

  • Group-based workflow analysis project

  • Designing a lean improvement plan

  • Presenting solutions to stakeholders

  • Action roadmap for implementation

Closing Call to Action

Join this ten-day training course to master industrial engineering and productivity improvement, equipping yourself to drive efficiency, quality, and sustainable competitiveness.

Industrial Engineering and Productivity Improvement

The Industrial Engineering and Productivity Improvement Training Courses in Geneva equip professionals with the analytical tools, methodologies, and strategic frameworks required to enhance operational efficiency and streamline production processes. Designed for industrial engineers, operations managers, supervisors, and continuous improvement specialists, these programs focus on optimizing workflows, reducing waste, and improving resource utilization within manufacturing and service environments.

Participants gain a strong foundation in industrial engineering principles, including process analysis, work measurement, capacity planning, facility layout optimization, and performance benchmarking. The courses emphasize how systematic evaluation of processes leads to effective redesign and measurable performance improvement. Through practical simulations, case studies, and hands-on exercises, attendees learn to apply lean methodologies, workflow optimization techniques, and productivity analysis tools that align with organizational objectives.

These productivity improvement training programs in Geneva also address advanced performance enhancement strategies such as value stream mapping, root cause analysis, standardized work development, and continuous improvement systems. Participants explore how data-driven decision-making and cross-functional collaboration contribute to sustainable operational gains. The curriculum highlights the importance of balancing efficiency with quality, safety, and employee engagement to ensure lasting results.

Technological integration is another key aspect of the program. Participants study how digital monitoring systems, automation, and production analytics can support productivity improvement across manufacturing operations. They gain insight into identifying improvement opportunities enabled by smart technologies while maintaining alignment with strategic business goals.

Attending these training courses in Geneva offers a unique opportunity to learn in an international environment known for innovation, research, and organizational excellence. Through expert-led instruction and peer collaboration, participants develop the skills and confidence needed to lead operational improvement initiatives, enhance production system performance, and support continuous growth within their organizations. Upon completion, professionals are equipped to drive productivity enhancement that strengthens competitiveness and operational resilience in a rapidly evolving global marketplace.