Logo Loader
Course

|

The Machine Learning for Demand Forecasting in Amman is a specialized training course designed to equip professionals with advanced analytics for accurate business forecasting.

Amman

Fees: 4700
From: 15-12-2025
To: 19-12-2025

Amman

Fees: 4700
From: 09-02-2026
To: 13-02-2026

Machine Learning for Demand Forecasting

Course Overview

Accurate demand forecasting is vital for supply chain efficiency, inventory optimization, and strategic planning. This Machine Learning for Demand Forecasting Training Course introduces participants to modern ML techniques that outperform traditional forecasting methods.

Participants will learn how to build and evaluate forecasting models, use time-series analysis, and apply supervised and unsupervised learning approaches. Real-world case studies and practical labs will show how organizations leverage ML to anticipate demand, reduce costs, and improve decision-making.

By the end of the course, attendees will be able to design and implement machine learning models that deliver more reliable demand forecasts and support agile business strategies.

Course Benefits

  • Improve demand forecasting accuracy with ML

  • Apply predictive analytics for smarter planning

  • Optimize supply chain and inventory management

  • Anticipate customer demand and market fluctuations

  • Strengthen decision-making with AI-driven insights

Course Objectives

  • Explore machine learning applications in demand forecasting

  • Build time-series and regression-based forecasting models

  • Apply supervised and unsupervised ML techniques

  • Evaluate and validate model performance

  • Use ML for supply chain and sales demand predictions

  • Address data quality and feature engineering challenges

  • Integrate ML forecasting into business planning systems

Training Methodology

The course combines lectures, case studies, and hands-on labs with forecasting datasets. Participants will build and test ML models using real-world scenarios and platforms.

Target Audience

  • Supply chain and operations managers

  • Data scientists and analysts

  • Business strategists and planners

  • Professionals in retail, manufacturing, and logistics

Target Competencies

  • Machine learning forecasting techniques

  • Predictive analytics for demand planning

  • Time-series modeling and evaluation

  • Data-driven supply chain strategy

Course Outline

Unit 1: Introduction to ML in Forecasting

  • Traditional vs. machine learning forecasting methods

  • Benefits and challenges of ML in demand planning

  • Key ML algorithms for forecasting

  • Industry case studies

Unit 2: Data Preparation and Feature Engineering

  • Collecting and cleaning demand data

  • Handling missing values and outliers

  • Feature engineering for better predictions

  • Practical dataset preparation exercise

Unit 3: Time-Series and Predictive Modeling

  • Time-series analysis and ARIMA models

  • Regression and neural network approaches

  • Hybrid models for complex forecasting

  • Building predictive models in practice

Unit 4: Model Evaluation and Validation

  • Metrics for forecasting accuracy

  • Cross-validation and testing approaches

  • Avoiding overfitting and underfitting

  • Real-world model evaluation case study

Unit 5: Business Integration and Future of ML Forecasting

  • Embedding ML forecasts into supply chain planning

  • Using forecasts for sales and inventory optimization

  • Ethical and governance considerations in AI forecasting

  • Future trends in demand forecasting technologies

Ready to improve forecasting with machine learning?
Join the Machine Learning for Demand Forecasting Training Course with EuroQuest International Training and transform the accuracy of your business planning.

Machine Learning for Demand Forecasting

The Machine Learning for Demand Forecasting Training Courses in Amman equip professionals with the analytical and technical skills to predict future demand patterns and optimize business operations using advanced machine learning techniques. Designed for data analysts, supply chain managers, business planners, and decision-makers, these programs provide a comprehensive approach to applying AI-driven forecasting models across industries.

Participants gain a solid understanding of machine learning applications for demand forecasting, exploring how algorithms can uncover trends, seasonality, and external influences in complex data sets. The courses cover essential topics such as time-series modeling, regression analysis, neural networks, and predictive analytics. Through hands-on exercises and case studies, participants learn to build and evaluate forecasting models that enhance inventory planning, production scheduling, and market responsiveness.

These demand forecasting and predictive analytics training programs in Amman blend theoretical insights with practical implementation. Participants explore how to integrate machine learning models with business intelligence systems to improve decision accuracy and reduce operational risks. The curriculum emphasizes data preprocessing, model selection, performance evaluation, and the use of modern tools such as Python and cloud-based analytics platforms for scalable forecasting solutions.

Attending these training courses in Amman offers a valuable opportunity to engage with global experts and industry peers in a dynamic, innovation-driven environment. The city’s growing role as a regional center for technology and analytics enhances the learning experience, fostering collaboration and applied problem-solving. By completing this specialization, participants will be equipped to design and deploy AI-powered forecasting systems that drive efficiency, agility, and profitability—enabling organizations to anticipate market shifts, align resources effectively, and make informed strategic decisions in an increasingly data-driven global economy.